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Abstract We present OPEN-EASE, a cloud-based knowledge base of robot experience data
that can serve as episodic memory, providing a robot with comprehensive information for
autonomously learning manipulation tasks. OPEN-EASE combines both robot and human
activity data in a common, semantically annotated knowledge base, including robot poses,
object information, environment models, the robot’s intentions and beliefs, as well as in-
formation about the actions that have been performed. A powerful query language and
inference tools support reasoning about the data and retrieving information based on se-
mantic queries. In this paper, we focus on applications of OPEN-EASE in the context of
autonomous learning.

1 Introduction

Autonomous learning for robotic agents has recently gained substantial interest in the re-
search community. The basic idea is that the learning methods do not have to depend on pro-
grammers who provide suitable training examples for learning. Rather, autonomous learn-
ing investigates how “autonomous systems can efficiently learn from the interaction with
the environment, especially by having an integrated approach to decision making and learn-
ing, allowing systems to autonomously decide on actions, representations, hyperparameters
and model structures for the purpose of efficient learning” [1]. Indeed, research on the co-
development of learning algorithms and representations suitable for learning has achieved
substantial progress, with deep learning possibly being the most prominent example.

Yet, two aspects of autonomous learning seem to be barriers for even larger impact
on autonomous robot control. First, autonomous learning so far typically works within a
carefully defined mathematical framework without the agent being able to look beyond the
structural, representational limits of said framework. Characteristic examples are robotic
agents that learn motion skills. Such robots can learn motion skills that optimize some given
objective functions, but they are in most cases unable to reason about the consequences of
their motions. Consider a robot that learns to flip pancakes. Such a robot could learn to
perform dexterous motions of the spatula, but not to understand how the motion is to be
adapted if the pancake sticks to the pan or if a knife is used instead of a spatula. Handling
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such situations requires common sense (e.g. regarding physics). Second, the data sets that
are used for learning are often too narrow in their scope. If a robot is to learn flipping pan-
cakes it is not sufficient to learn from the position, velocity, acceleration, and force data of
the motion. The learning data does also have to include the intentions, beliefs, perceived in-
formation, predicted effects, etc. Humans have developed an episodic memory that records
experiences in a very comprehensive and detailed fashion in order to provide the informa-
tional basis for autonomous learning. We propose a publicly accessible knowledge service,
called OPEN-EASE, to overcome these two barriers for autonomous robot learning. OPEN-
EASE provides an infrastructure for enabling robots to collect episodic memories that do
not only provide the pose and sensor data streams but also a symbolic structure on top of
this data that enables the robots to reason about what they did, how, what happened when
they did it, why they did it, what they believed and what decisions they made. This data is
available in the form of a knowledge representation that is based on description logic and
Prolog-based reasoning.

If we aim at robots that are able to autonomously improve their course of action based
on data they record during complex tasks (which forms a kind of “episodic memory”), we
have to account for this complexity in the learning setup. A memory system for providing
data for autonomously learning models of robot manipulation tasks therefore has to fulfill
the following requirements:

(◦) Comprehensive data that covers all relevant aspects a robot needs to consider, rang-
ing from the geometry of the robot and the scene, the robot’s movements over time and its
sensory percepts up to the types, parameters, durations, and results of the performed actions

(◦) An expressive representation that sets the individual pieces of information into rela-
tion and assigns meaning to them, e.g. that a pose denotes the position of the robot’s gripper

(◦) A query language operating on the data that allows the robot to select the information
that it needs for a learning problem at hand, for example all trajectories of the right gripper
during reaching motions, or the pose of its camera and all known objects in the surroundings
at the times of failed perception tasks

With the OPEN-EASE project [2], we aim at establishing an episodic memory system
that provides autonomous robots with unprecedented memorization and reasoning capa-
bilities. It consists of a large semantically annotated database of comprehensive log data of
robot manipulation tasks which is combined with a representation and query language based
on time interval logics. Examples of such annotations are the hierarchical relation between
tasks, their start and end times, types, which robots operated on which objects in which
contexts, and what an action’s input parameterization and output was. The symbolic anno-
tations are closely linked to subsymbolic information such as current joint states of a robot,
absolute viewing direction of a camera, and characteristics of detected objects (color, shape,
type, etc.). The system further includes tools for recording this data during task execution
without slowing down the robot, for exploring and visualizing the data using a web-based
frontend, and for sharing the data with other researchers via a cloud-based platform. In this
article, we focus on the applications of the system and its contributions in the context of
autonomously learning models of robot manipulation tasks. For details on the implementa-
tion, the system components and the query language, the interested reader is referred to the
original conference paper [2].
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Fig. 1: Web interface of OPEN-EASE.

2 System Overview

Figure 1 shows the web-based frontend of the OPEN-EASE system. The Prolog interaction
pane (1) allows the user to type Prolog queries and commands and to see the answers to these
queries. Prepared queries with English translation are provided in the query list pane (2). The
3D display pane (3) visualizes query results such as robot poses, its environment, trajectories
and object poses. The belief pane (4) enables the user to inspect the internal data structures
of the robot’s control program including descriptions of objects, actions and locations. The
image pane (5) can display images captured by the robot’s camera, and the visual analytics
pane (6) can visualize statistical data as bar charts and pie charts. Examples of statistical
data to display are failure- and task type distributions for getting a quick overview of what
happened in the analyzed dataset.

The OPEN-EASE system consists of two main components, one for recording data dur-
ing manipulation episodes and one for analyzing this data using the web-based frontend. The
former has been described in detail in a previous article [3], the latter has been implemented
as a cloud-based version of the KNOWROB robot knowledge base [4]. The data record-
ing system logs comprehensive data during robot manipulation tasks and stores it in the
form of an episodic memory. High-volume, continuous sensor data is stored in an efficient,
schema-less MongoDB database. Symbolic plan events, such as the hierarchy of actions
and sub-actions that are performed, their parameters, results and durations, are stored in a
knowledge base. Both the symbolic and continuous log data are represented with respect
to a common ontology, which allows standardized semantic access to all information in the
system. The query interface can either be used by humans via the aforementioned web-based
frontend, or by robots via a WebSocket connection. It offers a library of query predicates for
reasoning about the logs that extract symbolic knowledge from the subsymbolic log data at
query time as needed. We call this concept a “virtual knowledge base” that is created on top
of the semi-structured and often high-volume log data. The conceptual connection between
these components is shown in Figure 2: A “virtual knowledge base” provides a symbolic
view on the continuous, subsymbolic sensor data stored in the database, which can then
easily be combined with symbolic plan events.
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Fig. 2: Overview of the OPEN-EASE system. The logging components record detailed log data of manipu-
lation episodes into a knowledge base. A library of query predicates is provided for reasoning about the data
and can be called by human or robot clients via the Internet.

3 Projected Applications

OPEN-EASE is designed to facilitate a wide range of applications. At the moment, we are
already using a prototype of the OPEN-EASE system for some of the following applications,
and are working on extending it towards the others.

3.1 Analysis, Benchmarking and Debugging of Robot Behavior

The detailed logs recorded by OPEN-EASE allow to analyze robot tasks in great detail, both
at the level of single sub-actions and at the aggregate level of complete tasks. For example,
the user can can ask questions such as: How long did actions take? Which actions were
successful? Under which circumstances did which sub-actions fail? Could these failures be
handled automatically? How did the robot move while performing its tasks? The logs further
allow to reconstruct the world state as the robot believed it to be as well as the internal state
of the robot’s control program at a given moment in time. This can be very helpful for
debugging complex robot tasks, for identifying subtle anomalies in robot behavior, and for
analyzing problems after a task has been performed.

3.2 Autonomous Learning from Episodic Memories

The log data includes both the motion commands sent by the robot and the observed out-
comes of these actions, i.e. the performed movements and their success or failure. This
allows to learn models correlating the plan outcomes and the initial plan parameters, turning
the supervised learning problem of identifying suitable plan parameters into a unsupervised
one. Examples of learning tasks are the selection of good locations for performing manip-
ulation actions, expectations about the duration of tasks, or the ’compilation’ of optimized
motion primitives for common tasks. Figure 3 shows the episodic memory of a PR2 robot
grasping a cup. Trajectories can be semantically distinguished by the task during which they
were performed.

Based on a declarative description of a learning task, that specifies which features are to
be used for predicting which output variables, a robot can autonomously query the knowl-
edge base to retrieve the required training data from its log files. As the data in the knowledge
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Fig. 3: Memorized grasping trajectory for picking up a cup

base is semantically annotated, semantic meaning can also be assigned to the learned models
to help a robot decide what to use these models for.

3.3 Platform for Publishing Benchmark Datasets

Due to its cloud-based nature, it is very easy to share datasets in OPEN-EASE with other
researchers. The standardized common ontology and query predicates map the individual
data sets, which may be structured in different ways, into a common format, thereby facil-
itating the re-use of analyses and algorithms on other data sets. A common data format is
also the prerequisite for comparing the performance of algorithms on different benchmark
data sets. Such benchmarks exist for other domains such as SLAM [5] or human activity
recognition [6–8], though these benchmarking problems are much more narrow and better
defined than robot manipulation tasks.

Having comprehensive and easy-to-use benchmark datasets available may also attract
researchers in machine learning and AI that do not have the robot equipment to perform
experiments themselves. While robotics is often used as example application of new algo-
rithms in these fields, the danger of developing algorithms without access to real data is
that assumptions are made that are not justified in real applications. By providing datasets
recorded during experiments of real robots, we hope to alleviate this problem.

3.4 Making Robot Experiments Reproducible

Reproducing robot experiments is often difficult, despite all progress made towards com-
mon open-source components and middleware, as it usually requires access to the same
robot hardware and a similar environment setup. In addition, expertise in robot technol-
ogy and software components is often needed to run the experiments. With OPEN-EASE,
researchers can make a complete dataset of their experiments public and let reviewers and
peer researchers explore the data to better understand the experiment setup, the exact actions
that have been performed, their timing, and all other aspects that characterize the robot’s per-
formance and the difficulty of the tasks it had to perform.

3.5 Teaching

We are starting to use OPEN-EASE for teaching students about AI-enabled robotics. The
web-based interface provides an easy method for giving them access to a robot’s knowledge
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base and data from real experiments without requiring any software installation. Using these
tools, students can for example learn which data is available in which format, develop new
inference mechanisms, and test them in the recorded situations.

4 Discussion

In this paper, we gave an overview of the OPEN-EASE system and its applications in the
context of autonomous robot learning. OPEN-EASE provides an open platform for record-
ing, visualizing, analyzing and sharing robot data. Its reasoning mechanisms allow robots
to extract the data they need for a specific learning problem from automatically recorded,
semi-structured log data.

To explore the existing data sets and try out the analysis system, users can simply create
a free account at http://www.open-ease.org. Users that would like to record their own data
sets can use the provided open-source logging infrastructure and either start their own, local
analysis server or upload the data to the public OPEN-EASE server. We have tried to keep
the toolkit as modular as possible to allow users to selectively use those components that fit
their setup and use case. Our robots perform their tasks under the supervision of the CRAM
executive [9] that automatically records comprehensive log data as described in [3]. This
setup is well integrated and currently provides the most comprehensive reasoning support.
However, if users would like to use their own robot executive, they can follow the documen-
tation to adapt the logging components and to implement the query predicates based on their
data structures.
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